skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chatterjee, Shami"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The mergers of double neutron star (DNS) systems are believed to drive the majority of shortγ-ray bursts (SGRBs), while also serving as production sites of heavyr-process elements. Despite being key to (i) confirming the nature of the extragalactic SGRBs, (ii) addressing the poorly understoodr-process enrichment in the ultrafaint dwarf galaxies (UFDGs), and (iii) probing the formation process of DNS systems, the space velocity distribution of DNSs is still poorly constrained, due to the small number of DNSs with well-determined astrometry. In this work, we determine new proper motions and parallaxes of two Galactic DNSs, PSR J0509+3801 and PSR J1930−1852, using the Very Long Baseline Array, and we estimate the transverse velocitiesvof all 11 isolated Galactic DNSs having proper-motion measurements in a consistent manner. Our correlation analysis reveals that the DNSvis tentatively correlated with three parameters: spin period, orbital eccentricity, and companion mass. With the preliminaryvdistribution, we obtain the following findings. First, the refinedvdistribution is confirmed to agree with the observed displacements of the localized SGRBs from their host galaxy birth sites. Second, we estimate that around 11% and 25% of DNSs remain gravitationally bound to UFDGs with escape velocities of 15 and 25 km s−1, respectively. Hence, the retained DNSs might indeed be responsible for ther-process enrichment confirmed so far in a few UFDGs. Finally, we discuss how a future ensemble of astrometrically determined DNSs may probe the multimodality of thevdistribution. 
    more » « less
  2. Free, publicly-accessible full text available January 2, 2026
  3. Abstract We use cyclic spectroscopy to perform high-frequency resolution analyses of multihour baseband Arecibo observations of the millisecond pulsar PSR B1937+21. This technique allows for the examination of scintillation features in far greater detail than is otherwise possible under most pulsar timing array observing setups. We measure scintillation bandwidths and timescales in each of eight subbands across a 200 MHz observing band in each observation. Through these measurements we obtain intra-epoch estimates of the frequency scalings for scintillation bandwidth and timescale. Thanks to our high-frequency resolution and the narrow scintles of this pulsar, we resolve scintillation arcs in the secondary spectra due to the increased Nyquist limit, which would not have been resolved at the same observing frequency with a traditional filterbank spectrum using NANOGrav’s current time and frequency resolutions, and the frequency-dependent evolution of scintillation arc features within individual observations. We observe the dimming of prominent arc features at higher frequencies, possibly due to a combination of decreasing flux density and the frequency dependence of the plasma refractive index of the interstellar medium. We also find agreement with arc curvature frequency dependence predicted by Stinebring et al. in some epochs. Thanks to the frequency-resolution improvement provided by cyclic spectroscopy, these results show strong promise for future such analyses with millisecond pulsars, particularly for pulsar timing arrays, where such techniques can allow for detailed studies of the interstellar medium in highly scattered pulsars without sacrificing the timing resolution that is crucial to their gravitational-wave detection efforts. 
    more » « less
  4. Abstract We present the first catalog of fast radio burst (FRB) host galaxies from CHIME/FRB Outriggers, selected uniformly in the radio and the optical by localizing 81 new bursts to 2″ × ∼ 60″ accuracy using CHIME and the k’niʔatn k’l ⌣ stk’masqt Outrigger station, located 66 km from CHIME. Of the 81 localized bursts, we use the probabilistic association of transients to their hosts algorithm to securely identify 21 new FRB host galaxies, and compile spectroscopic redshifts for 19 systems, 15 of which are newly obtained via spectroscopic observations. The most nearby source is FRB 20231229A, at a distance of 90 Mpc. One burst in our sample is from a previously reported repeating source in a galaxy merger (FRB 20190303A). Three new FRB host galaxies (FRBs 20230203A, 20230703A, and 20231206A) are found toward X-ray and optically selected galaxy clusters, potentially doubling the sample of known galaxy cluster FRBs. A search for radio counterparts reveals that FRB 20231128A is associated with a luminous persistent radio source (PRS) candidate with high significance (Pcc ∼ 10−2). If its compactness is confirmed, it would be the nearest known compact PRS atz= 0.1079. Our catalog significantly increases the statistics of the Macquart relation at low redshifts (z < 0.2). In the near future, the completed CHIME/FRB Outriggers array will produce hundreds of FRBs localized with very long baseline interferometry (VLBI). This will significantly expand the known sample and pave the way for future telescopes relying on VLBI for FRB localization. 
    more » « less
    Free, publicly-accessible full text available August 13, 2026
  5. Abstract Precise localizations of a small number of repeating fast radio bursts (FRBs) using very long baseline interferometry (VLBI) have enabled multiwavelength follow-up observations revealing diverse local environments. However, the 2%–3% of FRB sources that are observed to repeat may not be representative of the full population. Here we use the VLBI capabilities of the full CHIME Outrigger array for the first time to localize a nearby (40 Mpc), bright (kJy), and apparently one-off FRB source, FRB 20250316A, to its environment on 13 pc scales. We use optical and radio observations to place deep constraints on associated transient emission and the properties of its local environment. We place a 5σupper limit ofL9.9 GHz < 2.1 × 1025erg s−1Hz−1on spatially coincident radio emission, a factor of 100 lower than any known compact persistent radio source associated with an FRB. Our Keck Cosmic Webb Imager observations allow us to characterize the gas density, metallicity, nature of gas ionization, dust extinction, and star formation rate through emission line fluxes. We leverage the exceptional brightness and proximity of this source to place deep constraints on the repetition of FRB 20250316A and find that it is inconsistent with all well-studied repeaters given the nondetection of bursts at lower spectral energies. We explore the implications of a measured offset of 190 ± 20 pc from the center of the nearest star formation region in the context of progenitor channels. FRB 20250316A marks the beginning of an era of routine localizations for one-off FRBs on tens of milliarcseconds scales, enabling large-scale studies of their local environments. 
    more » « less
    Free, publicly-accessible full text available August 20, 2026
  6. ABSTRACT Observations of pulsar scintillation are among the few astrophysical probes of very small-scale (≲ au) phenomena in the interstellar medium (ISM). In particular, characterization of scintillation arcs, including their curvature and intensity distributions, can be related to interstellar turbulence and potentially overpressurized plasma in local ISM inhomogeneities, such as supernova remnants, H ii regions, and bow shocks. Here we present a survey of eight pulsars conducted at the Five-hundred-metre Aperture Spherical Telescope (FAST), revealing a diverse range of scintillation arc characteristics at high sensitivity. These observations reveal more arcs than measured previously for our sample. At least nine arcs are observed toward B1929+10 at screen distances spanning $$\sim 90~{{\ \rm per\ cent}}$$ of the pulsar’s 361 pc path length to the observer. Four arcs are observed toward B0355+54, with one arc yielding a screen distance as close as ∼105 au (<1 pc) from either the pulsar or the observer. Several pulsars show highly truncated, low-curvature arcs that may be attributable to scattering near the pulsar. The scattering screen constraints are synthesized with continuum maps of the local ISM and other well-characterized pulsar scintillation arcs, yielding a three-dimensional view of the scattering media in context. 
    more » « less
  7. Abstract We present the host galaxies of four apparently nonrepeating fast radio bursts (FRBs), FRB 20181223C, FRB 20190418A, FRB 20191220A, and FRB 20190425A, reported in the first Canadian Hydrogen Intensity Mapping Experiment (CHIME/FRB) catalog. Our selection of these FRBs is based on a planned hypothesis testing framework where we search all CHIME/FRB Catalog-1 events that have low extragalactic dispersion measure (<100 pc cm−3), with high Galactic latitude (∣b∣ > 10°) and saved baseband data. We associate the selected FRBs with galaxies with moderate to high star formation rates located at redshifts between 0.027 and 0.071. We also search for possible multimessenger counterparts, including persistent compact radio and gravitational-wave sources, and find none. Utilizing the four FRB hosts from this study, along with the hosts of 14 published local Universe FRBs (z< 0.1) with robust host association, we conduct an FRB host demographics analysis. We find all 18 local Universe FRB hosts in our sample to be spirals (or late-type galaxies), including the host of FRB 20220509G, which was previously reported to be elliptical. Using this observation, we scrutinize proposed FRB source formation channels and argue that core-collapse supernovae are likely the dominant channel to form FRB sources. Moreover, we infer no significant difference in the host properties of repeating and apparently nonrepeating FRBs in our local Universe FRB host sample. Finally, we find the burst rates of these four apparently nonrepeating FRBs to be consistent with those of the sample of localized repeating FRBs observed by CHIME/FRB. Therefore, we encourage further monitoring of these FRBs with more sensitive radio telescopes. 
    more » « less
  8. Free, publicly-accessible full text available November 1, 2025
  9. Abstract A sample of 14 FRBs with measured redshifts and scattering times is used to assess contributions to dispersion and scattering from the intergalactic medium (IGM), galaxy halos, and the disks of host galaxies. The IGM and galaxy halos contribute significantly to dispersion measures (DMs) but evidently not to scattering, which is then dominated by host galaxies. This enables the usage of scattering times for estimating DM contributions from host galaxies and also for a combined scattering–dispersion redshift estimator. Redshift estimation is calibrated using the scattering of Galactic pulsars after taking into account different scattering geometries for Galactic and intergalactic lines of sight. The DM-only estimator has a bias of ∼0.1 and rms error of ∼0.15 in the redshift estimate for an assumed ad hoc value of 50 pc cm−3for the host galaxy’s DM contribution. The combined redshift estimator shows less bias by a factor of 4 to 10 and a 20%–40% smaller rms error. We find that values for the baryonic fraction of the ionized IGMfigm≃ 0.85 ± 0.05 optimize redshift estimation using dispersion and scattering. Our study suggests that 2 of the 14 candidate galaxy associations (FRB 20190523A and FRB 20190611B) should be reconsidered. 
    more » « less
  10. Abstract Radio wave scattering can cause severe reductions in detection sensitivity for surveys of Galactic and extragalactic fast (∼ms duration) transients. While Galactic sources like pulsars undergo scattering in the Milky Way interstellar medium (ISM), extragalactic fast radio bursts (FRBs) can also experience scattering in their host galaxies and other galaxies intervening in their lines of sight. We assess Galactic and extragalactic scattering horizons for fast radio transients using a combination of NE2001 to model the dispersion measure and scattering time (τ) contributed by the Galactic disk, and independently constructed electron density models for the Galactic halo and other galaxies’ ISMs and halos that account for different galaxy morphologies, masses, densities, and strengths of turbulence. For source redshifts 0.5 ≤zs≤ 1, an all-sky, isotropic FRB population has simulated values ofτ(1 GHz) ranging from ∼1μs to ∼2 ms (90% confidence, observer frame) that are dominated by host galaxies, althoughτcan be ≫2 ms at low Galactic latitudes. A population atzs= 5 has 0.01 ≲τ≲ 300 ms at 1 GHz (90% confidence), dominated by intervening galaxies. About 20% of these high-redshift FRBs are predicted to haveτ> 5 ms at 1 GHz (observer frame), and ≳40% of FRBs betweenzs∼ 0.5–5 haveτ≳ 1 ms forν≤ 800 MHz. Our scattering predictions may be conservative if scattering from circumsource environments is significant, which is possible under specific conditions. The percentage of FRBs selected against from scattering could also be substantially larger than we predict if circumgalactic turbulence causes more small-scale (≪1 au) density fluctuations than observed from nearby halos. 
    more » « less